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Abstract. An explicit derivation of the propagator is given for a particle in a Dirac delta 
potential A ~ ( x )  by making a direct application of a variational technique followed by a 
systematic use of Laplace transforms. Although the solution of the corresponding Schrodin- 
ger equation has been known for years, the solution of the propagator has been obtained 
only recently. 

1. Introduction 

We give an explicit derivation of the propagator for a particle in a Dirac delta potential 
A S ( x ) ,  where A is a coupling parameter, by making a direct application of a variational 
technique followed by a systematic use of Laplace transforms. Although the solution 
of the corresponding Schrodinger equation has been known for years (cf Morse and 
Feshbach (1953); see also Lapidus (1987) for a recent treatment and variations), the 
solution of the propagator has been obtained only recently (Gaveau and Schulman 
(1986); see also Schulman (1986) for applications) by a procedure involving stochastic 
processes, Brownian motion and the Feynman-Kac formula (cf Kac 1959). The 
importance of the propagator approach to quantum mechanics was particularly 
emphasised by Feynman (1948) (see also Feynman and Hibbs 1965) and at present it 
is indisputably recognised as a very basic ingredient in considering dynamical problems 
in quantum mechanics. 

For future reference we record here the expression for the free propagator ( A  = 0) 
(Feynman 1948, Feynman and Hibbs 1965): 

t < t ‘  

where T = ( t  - t ’ ) .  For simplicity of the notation we will use units where h = 1. The 
Laplace transform (cf Abramowitz and Stegun 1972) of (x tIx’ t ‘ )o  is 

d T  e - s r ( x t  Ix’t’)o 

This expression will be needed in the following. 
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2. Derivation of the propagator 

The propagator (xt Ix‘t’) satisfies a well known (cf Feynman 1948; Feynman and Hibbs 
1965) partial differential equation: 

d A2 
-i---+h8(x) (xtIx’t’)= - i8(x-xr )8( t - f r )  ( d t  2m 

and for its adjoint we have 

(i :-g+h8(x) (x‘ t ’ Ixt)=i8(x-xr)8( t  - t ’ ) .  ) 
We take the partial derivation of (3) with respect to the coupling A to obtain 

8 ( x ) ( x t ~ x r t r ) + (  -i---+h8(x) d A2 
a t  2m 

(3) 

(4) 

Upon multiplying (5) by (x”t”lxt) from the left and integrating over x from -CO to CO 

(-CO < x < 00) and integrating over t from t’ to t” ( t ’  < t < t”) we get 

i,:” d t(  x” t ” I 0 t)( 0 t /x’ t ’) 

a A2 
-X d t  2m 

= - dt  j E  dx(x”f”~ xt) (-i ---+ AS(x) 

We integrate the right-hand side of (6) by parts, and use (4) to obtain finally 

- d (x”t”1 x’t’) = -i 5,: dt(xrrt”/0t)(0t~x’t‘). ( 7 )  
dh 

This is our basic starting equation. (Equation ( 7 )  is the content of the classic Schwinger 
dynamical principle (cf Schwinger 1951, 1961, Manoukian 1986), the knowledge of 
which, however, is not needed here.) 

To solve (7) we set (x”f”lx’t’) = F(x”,  x‘; T ) ,  T = t ” -  t’, and define its Laplace 
transform: 

L(x”, x’; s )  = d T  eCSTF(x‘’, x’; T ) .  (8) iom 
We consider first the case in ( 7 )  when x” = 0, x’ = 0. That is, we consider first the equation 

(9) 

This gives the Laplace-transformed equation 

whose solution is 

LdO, 0; s) L(0,O; s) = 
1 + ihLo(O, 0; s) 
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where Lo(O, 0; s) is inferred from (2) to be equal to m. Hence the inverse Laplace 
transform F(0,O; T )  is (cf Abramowitz and Stegun 1972): 

- 

F(0,O; T )  = d$ (&- b exp(b2T) e r f c ( b n )  (12) 

b = A  

As the next step we consider the equation: 

(14) 
-(x”t”lOt’) a = -i ~ , ~ “ d t ( x ” t ” ~ O t ) ( O t ~ O t ’ )  
ah 

obtained from (7) by setting x’=O, where (Or lot’) is known and is given in (12) for 
t - t‘= T. The Laplace-transformed equation of (14) is 

(15) 
a 
- L(x”, 0; s )  = -iL(x”, 0; s)L(O, 0, s) 
a h  

whose solution is from (1 1) 

L(x”, 0; s )  = Lo(x”, 0; s) 1 + ih ( & - ’  
and from (2), this becomes 

Similarly we have 

L(0, x”, s) = L(x”, 0; s). (18) 
From (17) and (18) we may then readily obtain the solution of (7) for arbitrary x’, 

x”. To this end, the Laplace-transformed equation of (7) is 

(19) 
a 
- L(x”, x’; s) = (-i)L(x”, 0; s)L(O, x’; s )  
dh 

whose solution is 

The inverse Laplace transform of (20) then gives (cf Abramowitz and Stegun 1972) 
the final result: 

du exp(-umh) exp ( - - ( ~ x “ ~ + / x ‘ ~ + u ) ~ )  m 
2i T (x”t”lx’t’) = ( ~ ” t ” / x ’ t ’ ) ~ -  mh 

where T =  t ” -  t‘, and (x”t”lx’t’), is given in (1). 
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